are actually replaced. For example, with $\mathrm{H}_{3} \mathrm{PO}_{4}$ and NaOH , three different reactions are possible:

$$
\begin{gathered}
3 \mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O} \\
2 \mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{HPO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

Each of these reactions is possible, and each equation is balanced. Obviously, we need different names for the three different kinds of sodium phosphate salts. Of the several ways to accomplish this, the most highly recommended and unequivocal is to include as part of the name the number of $\mathrm{H}^{+}$ions that have not been replaced in salt formation. In the example above we would have

| $\mathrm{Na}_{3} \mathrm{PO}_{4}$ | sodium phosphate |
| :--- | :--- |
| $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ | sodium monohydrogen phosphate |
| $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ | sodium dihydrogen phosphate |

If the acid contains only two $\mathrm{H}^{+}$, then only two different salts are possible; they are most acceptably named by the method just described. However, another traditional method that will probably continue in use for many years is to use the prefix bi- for the salt of the acid with just half of the hydrogen atoms replaced, as illustrated for the sodium bisulfate that is produced by the reaction

$$
\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NaHSO}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

## BINARY COMPOUNDS NOT DERIVED FROM ACIDS

The atoms listed in this section may combine with many metals to form binary compounds (compounds made up of two elements) that are saltlike in nature, but are not derived from acids. For purposes of naming, it is convenient to assign negative charges to these atoms. Except in the names of the oxides, the suffixes -ous and -ic are not used with metals forming compounds in this group. The names of all these compounds end in -ide. Only the metal oxides of this group are common.

| $\mathrm{H} \sim$ | LiH |
| :--- | :--- |
| $\mathrm{O}^{2-}$ | FeO |
| $\mathrm{N}^{3-}$ | $\mathrm{Sn}_{3} \mathrm{~N}_{4}$ |
| $\mathrm{P}^{3-}$ | $\mathrm{Ba}_{3} \mathrm{P}_{2}$ |
| $\mathrm{As}^{3-}$ | $\mathrm{Na}_{3} \mathrm{As}^{2}$ |
| $\mathrm{C}^{4 n}$ | $\mathrm{Al}_{4} \mathrm{C}_{3}$ |
| $\mathrm{Si}^{\mathrm{i}^{4-}}$ | $\mathrm{Mg}_{2} \mathrm{Si}^{2}$ |

lithium hydride
ferrous oxide ( $\mathrm{Fe}_{2} \mathrm{O}_{3}$ ferric oxide)
tin nitride
barium phosphide
sodium arsenide
aluminum carbide
magnesium silicide

## BINARY COMPOUNDS COMPOSED OF TWO NONMETALS

Allowing for a bit of quibbling one way or the other, there are only 20 nonmetallic elements. Of these 20 elements, six are so unreactive that until recently they were thought never to combine with other elements. If, for practical considerations, we eliminate these six elements and hydrogen (which we've already dealt with in various forms above), this leaves just 13 nonmetallic elements ( B , $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{F}, \mathrm{Si}, \mathrm{P}, \mathrm{S}, \mathrm{Cl}, \mathrm{Se}, \mathrm{Br}, \mathrm{Te}, \mathrm{I}$ ) that can combine with each other. These nonmetallic binary compounds are designated by the names of the two elements followed by the ending -ide. Before the name of the second element there is a prefix to indicate how many atoms of it are in the molecule. Unfortunately, this is not usually done for the first element. The following are examples of some common compounds of this type:

| CO | carbon monoxide | $\mathrm{SO}_{3}$ | sulfur trioxide |
| :--- | :--- | :--- | :--- |
| $\mathrm{CO}_{2}$ | carbon dioxide | $\mathrm{CCl}_{4}$ | carbon tetrachloride |
| $\mathrm{Cl}_{2} \mathrm{O}$ | chlorine monoxide | $\mathrm{PF}_{5}$ | phosphorus pentafluoride |
| $\mathrm{ClO}_{2}$ | chlorine dioxide | $\mathrm{SF}_{6}$ | sulfur hexafluoride |
| $\mathrm{Cl}_{2} \mathrm{O}_{7}$ | chlorine heptoxide | $\mathrm{N}_{2} \mathrm{O}_{4}$ | nitrogen tetroxide |

## PROBLEMS A

Name the following compounds (proper spelling is required).

| 1. $\mathrm{Ca}(\mathrm{OH})_{2}$ | 12. $\mathrm{FeC}_{2} \mathrm{O}_{4}$ | 23. $\mathrm{Al}\left(\mathrm{ClO}_{4}\right)_{3}$ |
| :---: | :---: | :---: |
| 2. $\mathrm{Ag}_{3} \mathrm{PO}_{4}$ | 13. $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ | 24. $\mathrm{Hg}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$ |
| 3. AgSCN | 14. $\mathrm{MnCO}_{3}$ | 25. $\mathrm{CsClO}_{3}$ |
| 4. $\mathrm{MgC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}$ | 15. $\mathrm{Mn}(\mathrm{OH})_{3}$ | 26. $\mathrm{Sr}(\mathrm{IO})_{2}$ |
| 5. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ | 16. $\mathrm{Ni}(\mathrm{ClO})_{2}$ | 27. $\mathrm{Rb}_{3} \mathrm{AsO}_{3}$ |
| 6. ZnS | 17. $\mathrm{CrAsO}_{4}$ | 28. $\mathrm{Be}_{3} \mathrm{~N}_{2}$ |
| 7. $\mathrm{Cd}(\mathrm{CN})_{2}$ | 18. $\mathrm{SnBr}_{4}$ | 29. $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ |
| 8. $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$ | 19. $\mathrm{CrF}_{2}$ | 30. $\mathrm{Sb}\left(\mathrm{NO}_{3}\right)_{3}$ |
| 9. $\mathrm{CuSO}_{3}$ | 20. $\mathrm{Pb}\left(\mathrm{MnO}_{4}\right)_{2}$ | 31. $\mathrm{PCl}_{3}$ |
| 10. CuI | 21. $\mathrm{Na}_{4} \mathrm{SiO}_{4}$ | 32. $\mathrm{Bi}(\mathrm{OCN})_{3}$ |
| 11. $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ | 22. $\mathrm{Bi}_{2} \mathrm{O}_{5}$ | 33. $\mathrm{Al}_{2}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{3}$ |

Without consulting a text, give the formulas for the following compounds.
34. aluminum bromate
36. bismuth(III) oxide
35. mercurous phosphate
37. strontium bicarbonate
38. aurous iodide
39. chromium(III) iodate
40. manganous hydroxide
41. lithium arsenide
42. arsenic(III) sulfate
43. stannic chloride
44. nickelous periodate
45. chlorine heptoxide
46. silver oxalate
47. chromium(II) borate
48. antimonous sulfide
49. aluminum acetate
50. calcium oxalate
51. sodium chlorite
52. tin(II) azide
53. mercury(II) cyanide
54. ammonium sulfite
55. cobalt(II) permanganate
56. plumbous carbonate
57. zinc phosphide
58. cupric silicate
59. barium hypoiodite
60. Given that selenium ( Se ) is similar in properties to sulfur ( S ), and that francium ( Fr ) is similar to sodium ( Na ), write the formulas for the following compounds.
(a) zinc selenide
(e) francium selenate
(b) francium phosphate
(f) selenium hexafluoride
(c) cobalt(II) selenite
(g) francium hydride
(d) selenium dioxide
61. Write balanced chemical equations for the following reactions.
(a) beryllium hydroxide + thiocyanic acid
(b) periodic acid + antimonic hydroxide
(c) mercurous hydroxide + acetic acid
(d) arsenious acid + chromous hydroxide
(e) eerie hydroxide + boric acid
(f) hydrazoic acid + ferrous hydroxide
(g) lithium hydroxide + hypobromous acid

## PROBLEMS B

Name the following compounds (proper spelling is required).
62. $\mathrm{Ag}_{3} \mathrm{PO}_{4}$
63. $\mathrm{CoCl}_{3}$
64. $\mathrm{Be}\left(\mathrm{NO}_{2}\right)_{2}$
65. $\mathrm{Fe}\left(\mathrm{MnO}_{4}\right)_{3}$
66. $\mathrm{NH}_{4} \mathrm{NO}_{2}$
67. $\mathrm{Al}_{2} \mathrm{~S}_{3}$
68. $\mathrm{Zn}\left(\mathrm{IO}_{4}\right)_{2}$
69. $\mathrm{Pb}_{3}\left(\mathrm{BO}_{3}\right)_{2}$
70. $\mathrm{As}(\mathrm{CN})_{3}$
71. $\mathrm{Ni}_{3}\left(\mathrm{AsO}_{3}\right)_{2}$
72. $\mathrm{I}_{2} \mathrm{O}_{7}$
73. $\mathrm{Ba}_{2} \mathrm{Si}$
74. $\mathrm{AuHSO}_{3}$
75. $\mathrm{Ba}(\mathrm{BrO})_{2}$
76. $\mathrm{CaH}_{2}$
77. $\mathrm{N}_{2} \mathrm{O}_{5}$
78. $\mathrm{Sb}_{2} \mathrm{~S}_{3}$
79. $\mathrm{MgC}_{2} \mathrm{O}_{4}$
80. ICl
81. $\mathrm{Rb}_{4} \mathrm{SiO}_{4}$
82. $\mathrm{SF}_{6}$
83. $\mathrm{Ca}_{3} \mathrm{P}_{2}$
84. $\mathrm{MnO}_{2}$
85. $\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$
86. $\mathrm{CrBr}_{2}$
87. $\mathrm{BaCrO}_{4}$
88. $\mathrm{Cd}(\mathrm{SCN})_{2}$

Without consulting a text, give the formulas for the following compounds.
89. potassium oxalate
90. cupric arsenate
91. bismuthous carbonate
92. manganese(III) oxide
93. mercurous sulfate
94. nitrogen tri-iodide
95. cobalt(II) borate
96. cesium hypoiodite
97. boron nitride
98. cadmium dichromate
99. ammonium acetate
100. zinc cyanide
101. tin(II) phosphate
102. iron(III) bromate
103. arsenic(V) perchlorate
104. magnesium monohydrogen borate 105. boron trifluoride 106. strontium silicate
107. beryllium hydroxide
108. stannic oxide
109. gold(III) fluoride
110. ferric chromate
111. iodine pentoxide
112. lithium thiocyanate
113. silver thiosulfate
114. antimonic permanganate
115. Given that astatine ( At ) is similar in properties to chlorine $(\mathrm{Cl})$, and that gallium $(\mathrm{Ga})$ is similar to aluminum $(\mathrm{Al})$, write the formulas for the following compounds.
(a) potassium astatate
(d) hydrastatic acid
(b) barium astatide
(e) gallium thiocyanate
(c) gallium sulfate
(f) gallium hypoastatite
116. Write balanced chemical equations for the following reactions.
(a) hydrosulfuric acid + zinc hydroxide
(b) ferric hydroxide + permanganic acid
(c) oxalic acid + plumbous hydroxide
(d) aluminum hydroxide + carbonic acid
(e) bromic acid + cupric hydroxide
(f) auric hydroxide + dichromic acid
(g) sulfamic acid + strontium hydroxide

## Sizes and Shapes of Molecules

A knowledge of molecular shapes and sizes is important to an understanding of chemical reactions. The shape of a molecule (and the bond types it possesses) has important implications for the manner in which it enters into chemical reactions. The shape and size of molecules also influence their packing in the crystalline state.
When atoms combine to produce molecules, they often do so in accord with the octet rule. Your text undoubtedly contains a fairly detailed discussion of the octet rule. In essence, it may be described as the tendency for an atom to lose, gain, or share electrons in order to achieve an $s^{2} p^{6}$ configuration in the outermost shell. The simplest atoms $\left(\mathrm{H}, \mathrm{Li}, \mathrm{Be}\right.$, and so on) tend to achieve a $1 s^{2}$ configuration, according to what might be called the duet rule.

In Chapter 8, we emphasize the loss and gain of electrons, leading to the formation of electrically charged ions, such as $\mathrm{Na}^{+}$and $\mathrm{Cl} \sim$. When electrons are shared, a molecule is formed, and the atoms are connected by a covalent bond. In this chapter we emphasize the approximate shapes, interatomic distances, and bond energies of molecules and molecular ions that are held together by covalent bonds.

## COVALENT BOND ENERGIES

The strengths of the bonds that hold the atoms together in a molecule can be determined in a variety of ways: for example, by direct calorimetric measure-
ment, by dissociation equilibrium measurements, by absorption spectrum measurements, or by mass spectrometry.

We define bond energy as the energy change ( $\Delta H$ ) for the chemical process in which one mole of a given bond is broken, when both the reactants and the products are in the hypothetical ideal-gas state of 1 atm and $25^{\circ} \mathrm{C}$. For a diatomic molecule, the bond energy is identical to the energy required to dissociate the gaseous molecule into its respective gaseous atoms. For the dissociation of $\mathrm{Cl}_{2}$ gas this corresponds to the reaction

$$
\mathrm{Cl}_{2(g)} \rightleftarrows 2 \mathrm{Cl}_{(g)}
$$

for which the $\mathrm{Cl}-\mathrm{Cl}$ bond energy is 58.0 kcal . We say that $\Delta H_{\mathrm{Cl}-\mathrm{Cl}}=58.0 \mathrm{kcal}$.
For a polyatomic molecule of the type $\mathrm{AB}_{n}$, which possesses $n$ A-B bonds, our definition of bond energy implies that each bond is the same, and that it corresponds to $V n$ of the total energy required to dissociate the gaseous $\mathrm{AB}_{n}$ molecule into $\mathrm{A}+n \mathrm{~B}$ gaseous atoms. This is a useful definition except when studying the detailed steps of a chemical reaction. For example, the total binding energy in a $\mathrm{CH}_{4}$ molecule is $397 \mathrm{kcal} /$ mole and, by our definition of bond energy, the C-H bond energy $=397 / 4=99.3 \mathrm{kcal}$. Extensive, complicated, and detailed studies have shown, however, that each H atom is not equally easily removed from carbon in this molecule; it is estimated that the individual bond energies are 104 kcal for $\mathrm{CH}_{3}-\mathrm{H}, 106 \mathrm{kcal}$ for $\mathrm{CH}_{2}-\mathrm{H}, 106 \mathrm{kcal}$ for $\mathrm{CH}-\mathrm{H}$, and 81 kcal for C-H, with a total of 397 kcal . In most cases, such detailed information is not available; neither is it normally needed except in discussion of the individual steps involved in chemical reactions.

The atoms of some elements (such as $\mathrm{C}, \mathrm{N}$, and O ) are able to share more than one pair of electrons between them, to form single, double, or triple bonds-depending on whether one, two, or three pairs of electrons are shared. In general, the bonding energy increases and the internuclear distance decreases as the number of bonds between a pair of atoms increases.

By studying the experimentally determined bond energies of hundreds of compounds, researchers have uncovered some useful generalizations, such as the following.

1. A single bond between two identical atoms has about the same strength ( $\triangle H_{\mathrm{A}-\mathrm{A}}$ ) in any molecule in which it occurs. Because the atoms are identical, the bond is purely covalent.
2. A strictly covalent bond between two different atoms (A and B) is about the same strength as the average of the bond strengths that would be observed if each atom were bonded to another like itself. That is,

$$
\begin{equation*}
\Delta H_{\mathrm{A}-\mathrm{B}}=\frac{1}{2}\left[\Delta H_{\mathrm{A}-\mathrm{A}}+\Delta H_{\mathrm{B}-\mathrm{B}}\right] \tag{9-1}
\end{equation*}
$$

TABLE 9-1
Covalent Bond Radii and Energies, and Electronegativities

| Element | Radius (A) | Bond energy $\triangle H_{A-A}$ (kcal/mole) | Electronegativity <br> (e) of element |
| :---: | :---: | :---: | :---: |
| $\mathrm{H}-\mathrm{H}$ | 0.30 | 104.2 | 2.1 |
| B-B | 0.88 | 62.7 | 2.0 |
| C-C | 0.772 | 83.1 | 2.5 |
| $\mathrm{C}=\mathrm{C}$ | 0.667 | 147 |  |
| $\mathrm{C}=\mathrm{C}$ | 0.603 | 194 |  |
| $\mathrm{Si}-\mathrm{Si}$ | 1.17 | 42.2 | 1.8 |
| $\mathrm{Si}=\mathrm{Si}$ | 1.07 |  |  |
| $\mathrm{Ge}-\mathrm{Ge}$ | 1.22 | 37.6 | 1.8 |
| $\mathrm{Sn}-\mathrm{Sn}$ | 1.40 | 34.2 | 1.8 |
| $\mathrm{N}-\mathrm{N}$ | 0.70 | 38.4 | 3.0 |
| $N=N$ | 0.60 | 100 |  |
| $N \equiv N$ | 0.55 | 226.2 |  |
| P-P | 1.10 | 51.3 | 2.1 |
| $P=P$ | 1.00 | 117 |  |
| As-As | 1.21 | 32.1 | 2.0 |
| $\mathrm{Sb}-\mathrm{Sb}$ | 1.41 | 30.2 | 1.9 |
| $\mathrm{Bi}-\mathrm{Bi}$ | 1.52 | 25 | 1.9 |
| O-O | 0.66 | 33.2 | 3.5 |
| $0=0$ | 0.55 |  |  |
| S-S | 1.04 | 50.9 | 2.5 |
| $S=S$ | 0.94 |  |  |
| $\mathrm{Se}-\mathrm{Se}$ | 1.17 | 44.0 | 2.4 |
| $\mathrm{Se}=\mathrm{Se}$ | 1.07 |  |  |
| $\mathrm{Te}-\mathrm{Te}$ | 1.37 | 33.0 | 2.1 |
| F-F | 0.64 | 36.6 | 4.0 |
| $\mathrm{Cl}-\mathrm{Cl}$ | 0.99 | 58.0 | 3.0 |
| $\mathrm{Br}-\mathrm{Br}$ | 1.14 | 46.1 | 2.8 |
| $\mathrm{I}-\mathrm{l}$ | 1.33 | 36.1 | 2.5 |

These two generalizations mean that to each element there can be assigned a "covalent bond energy" ( $\Delta H_{\mathrm{A}-\mathrm{A}}$ ), which can be used to estimate the strength of a bond between any two atoms that form a strictly covalent bond. Table 9-1 lists a few of these covalent bond energy assignments. Carbon and iodine form a purely covalent bond so, by our second generalization, its approximate bond energy would be

$$
\begin{aligned}
\Delta H_{\mathrm{C}-1} & =\frac{1}{2}\left[\Delta H_{\mathrm{C}-\mathrm{c}}+\Delta H_{\mathrm{I}-\mathrm{I}}\right] \\
& =\frac{1}{2}[83.1+36.1]=59.6 \mathrm{kcal}
\end{aligned}
$$

## ELECTRONEGATIVITY

Unfortunately, as in so many sharing processes, the pair of electrons in a covalent bond often is not shared equally by the two atoms The atom with the greater electron affinity will hold the pair closer to its nucleus, with the result that its end of the bond (and its end of the molecule) will be somewhat more negatively charged than the other end When this happens, we say that the bond is partially ionic and, because opposite charges attract each other, this partially ionic bond will be stronger than it would have been with equal sharing

Linus Pauling made a careful study of a tremendous number of partially ionic covalent bonds and came to the conclusion that, as a measure of its electron affinity, each element could be assigned an electronegattvity value (e) that would make it possible to estimate the energy of these bonds To calculate the approximate bond energy ( $\triangle H_{\mathrm{A}-\mathrm{B}}$ ) between the atoms A and B , his formula requires knowledge of the A-A bond energy ( $\Delta H_{\ddagger}$ ), the B-B bond energy ( $\Delta H_{\mathrm{B}-\mathrm{B}}$ ), and the electronegativitues of A and $\mathrm{B}\left(\epsilon_{\mathrm{A}}\right.$ and $\left.\epsilon_{\mathrm{B}}\right)$ Table 9-1 lists some electronegativity values along with covalent bond energies Pauling's finding, which we might call generalization \#3, is the following

3 The energy of a partially ionic covalent bond between two atoms (A and B) is equal to the energy expected from a strictly covalent bond between the two atomsplus an amount of energy related to the square of the difference in their electronegativities In equation form, Pauling's formula (with units in kcal) is

$$
\begin{equation*}
\Delta H_{\mathrm{A}}=\frac{1}{2}\left[\Delta H_{\mathrm{A}-\mathrm{A}}+\Delta H_{\mathrm{B}-\mathrm{B}}\right]+2306\left(\epsilon_{\mathrm{A}}-\epsilon_{\mathrm{B}}\right)^{2} \tag{9-2}
\end{equation*}
$$

You can see that, if A and B have equal electronegativities, then $\Delta H_{\mathrm{A}}$ is simply the average of the two covalent bond energies The greater the difference in electronegativites, the greater the percentage of ionic character and the stronger the bond If the difference in electronegativity becomes too great, the bond is essentially ionic, and the atoms are held together by electrostatic forces as in an ionic crystal, the concept of a molecule disappears

From this brief discussion you can see that more often than not most covalent bonds will be partially ionic, ' and most ionic bonds will be partially covalent " We shall describe a bond as being ionic or covalent according to its predominant characteristic Some chemists like to say that a bond possesses a certain percent ionic character One way of calculating an approximate value for this quantity is with the expression

$$
\begin{equation*}
\log F_{\mathrm{C}}=-\left(\frac{\epsilon_{\mathrm{l}}-\epsilon_{\mathrm{B}}}{3}\right)^{2} \tag{9-3}
\end{equation*}
$$

where $F_{\mathfrak{c}}$ is the fraction of colalentcharacter The fraction of iome character is $\mathrm{F}=1-F_{\mathrm{c}}$

## PROBLEM:

Calculate approximate values for the bond energy and the percent ionic character for the $\mathrm{C}-\mathrm{Cl}$ bond in $\mathrm{CCl}_{4}$.

## SOLUTION:

From Table 9-1 we find

$$
\begin{gathered}
\Delta H_{\mathrm{c}-\mathrm{c}}=83.1 \mathrm{kcal} / \mathrm{mole} \\
\Delta H_{\mathrm{Cl}-\mathrm{Cl}}=58.0 \mathrm{kcal} / \mathrm{mole}
\end{gathered}
$$

and

$$
\begin{aligned}
\boldsymbol{\epsilon}_{\mathrm{C}} & =2.5 \\
\boldsymbol{\epsilon}_{(1)} & =3.0
\end{aligned}
$$

With the Pauling equation, we obtain

$$
\begin{aligned}
\Delta H_{\mathrm{C}-\mathrm{Cl}} & =\frac{1}{2}[83.1+58.0]+(23.06 \mathrm{X} 3.0-2.5)^{2} \\
& =70.6+5.8=76.4 \mathrm{kcal} / \mathrm{mole} \\
\log F_{\mathrm{C}} & =-\left(\frac{3.0-2.5}{3}\right)^{2}=-0.027778 \\
F_{\mathrm{C}} & =0.938 \\
F_{\mathrm{C}} & =\mathrm{I}-0.938=0.062
\end{aligned}
$$

Percent ionic character $=6.2 \%$

## COVALENT BOND RADII

Before considering shape principles, we should take a look at the sizes of molecules, particularly their internuclear distances. Electron diffraction studies of molecules in the gas phase are especially useful for the determination of these distances (and the angles that the atom pairs form with one another). An interatomic distance is defined as the average internuclear distance between two atoms bonded together. Because these two atoms vibrate, the distance between them alternately lengthens and shortens in rapid succession but, if the distance is averaged for a period of time, the atoms appear to be separated by some fixed distance. A fourth generalization can be made about these distances.
4. The atoms of a given element always appear to have essentially the same radius $(R)$, regardless of the kinds of atoms to which they are bound (or their electronegativities). That is, covalent radii are additive,
and the approximate interatomic distance ( $D$ )between two atoms (A and $B$ ) will be given by

$$
D_{1-\mathrm{B}}=R_{\mathrm{A}}+R_{\mathrm{B}}
$$

## PROBLEM:

Calculate the $\mathrm{C}-\mathrm{Cl}$ distance in the $\mathrm{CCl}_{4}$ molecule.

## SOLUTION:

The interatomic distance is the sum of the covalent radii so, with data from Table 9-1,

$$
D_{c-(1)}=R_{c}+R_{(1}=0.77+0.99=1.76 \mathrm{~A}
$$

We have already observed in the preceding problem that the $\mathrm{C}-\mathrm{Cl}$ bond energy is about $764 \mathrm{kcal} / \mathrm{mole}$, and that it possesses about $6 \%$ ionic character.

## SHAPES OF MOLECULES

To predict the shape of a molecule, we can apply a set of simple principles. Before we outline them, however, you should realize that they have little predictive value when you try to answer the question, "What molecule is formed when two or more particular elements react?" From the same elements, but under differing conditions, it is possible to prepare many different molecules, not just one. Instead, our principles will answer the question, "What is the shape of the molecule with a particular formula?"

The concept of the central atom is convenient to use in discussing the shapes of molecules. In a simple molecule, one of the atoms usually is "central" to the whole molecule. For example, in $\mathrm{CCl}_{4}$ the central atom is C , the one to which all the other atoms are attached.

We shall use the term ligand (L) in its broadest sense to refer to those atoms that are attached to the central atom. What we mean by the shape of a molecule or ion is the geometrical arrangement of the ligands about the central atom.

## General Predictive Principles

In broad outline, our shape-prediction approach will assume that the valence electrons of the central atom (M) are all spin-paired (that is, their axes are parallel but spinning in opposite directions), and that these pairs of electrons will repel each other in such a way that they occupy positions of minimum repulsion (that is, positions of minimum potential energy). The electron pairs will try to get as far away from each other as they can and still stay in the molecule. The central atom's valence electron pairs will fall into one of two

